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ON STOCHASTIC NON-HOLOfdOMIC SYSTEMS* 

N-K. MOSHCHUK and I.N. SINITSYN 

A natural mechanical system is considered with ideal stochastic 
non-holonomic constraints under the action of potential, dissipative, 
and perturbing forces that depend on random (in general non-normal) 
paramters satisfying non-linear Ito stochastic differential equations. 
The corresponding stochastic equations of motion are constructed in 
Lagrangian and Hamiltonian variables, as well as the equations for 
finite-dimensional densities and characteristic functions. Stationary 
one-dimensional distributions are studied'in Chaplygin normal stochastic 
non-holonomic systems. Systematic and fluctuational drift is analysed. 
The problems of a rolling ball and a rolling convex rigid body on a 
translationally vibrating horizontal plane are considered. 

1. Assume that at each instant of time t the location of the natural non-holonomic 
stochastic system with ideal constraints is defined by the vector of generalized coordinates 
9 = [& . . . qnl= and the system velocities are constrained by m conditions of the form 

aAq' + a," = (I, x = 1, .) 111 (1.1) 

where ax = ax (q, n, t) are n-dimensional row matrices, which are deterministic functions of 
the generalized coordinates q, the random parameters JI = [n,(t)... nk (t)lT, and time t; nit0 := 
0x iI (q, JT, t) are deterministic functions of the listed variables. 

We assume that the random vector n satisfies an Ito stochastic differential equation of 
known form with the corresponding initial conditions: 

n' = cp(n, t) + Q((n, t)V, V = [V, ft) . . . I-, (t)]T, n(t,) = Jto (1.2) 

Here cp (n, t) and $ (JC, t) are k X 1 and kxl deterministic functions, respect- 
ively, V = dWidt is the (strict-sense) white noise vector, and W = W(t) is an arbitrary 
stochastic process with independent increments which has zero mean and a finite covariance 
matrix and is independent of x0. This process can, in general, be expressed by the formula 
/l/ 

W (t) = W, (tj 1. 5 c(x) I” (t, fir) (1 .:q 
R ’ 

Here W,(t) is a Wiener (normal) stochastic process, e(x) is a vector function (of 
the same 
integral 
p" (t, dz) 
disjoint 

dimension l as the process W(t)) of the Z-dimensional vector argument x, and the 
for any t >: t, is an Ito stochastic integral over the centred Poisson measure 
which is independent of the process W(t) and takes independent values on pairwise 
sets. The intensity v(t) of the process W(t) is given by the formula 

v(t) = Ye(t) i- ;,c (x)~(x)~vp(t, x)dx (1.4) 

where v0 (t) is the intensity of the Wiener process W, (t) and VP (t, x) is the intensity 
of the stream of lumps c(x) of the process W (t). 

We assume that the (n-dimensional) vector of generalized perturbing forces can be rep- 
resented in the form 

Q = Q (9, q’, V, a, t) = Q’ (9, q’> ~7 4 + Q” (n, q-7 n, t) V (1.5) 

Following Voronets /2/, we obtain an Ito stochastic equation of motion in Lagrange 
variables. Indeed, since the constraints (1.1) are ideal, we obtain by the D'Alembert-Lagrange 
principle the equation 

R = R (9, q’, x, t) 

(1.6) 
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where T, II and R respectively are the kinetic energy, the potential energy, and the 
Rayleigh scattering function. 

Of the n virtual displacements 6q,, only s-m are independent, because by (1.1) 
a%q = 0. Assume, to fix our ideas, that SC&,,+,, . . ..6q. are the independent virtual dis- 
placements. Put q' = [qm+l. . . q,P and q" = I&. . . p,,lT. Then Eqs.tl.1) enable us to express 

q "* in terms of q” and q in the form 

q”’ = B’q” + B” 
B'=B'(q,n,t)~/(B,,'II, s’=B”(q,n,t)r\l&“II; i=~,...,m: 

s=m+l,...,n 

(1.71 

where B'is an m X (n-m) matrix and B” is an m-dimensional column matrix. 
Substitute (1.7) into (1.6) and equate the coefficients of the independent variations 

6f7, to zero. Then, denoting by an asterisk the result obtained after eliminating the 
dependent generalized velocities q"' with the aid of (1.7), we obtain equations in Ito 
stochastic differentials 

In (I.%), the total differential of the compound function u = u(z,~,t) is evaluated 
by the generalized Ito formula /l/ 

du = -$-at + $$dz +D1[u]dt -I- D,[u]dW, -t s ~,[u]P(t,dx) 

RI 
(1 J) 

Non-ha~~nomic systems described by the system of stochastic differential Eqs.fl.21, (1.7) 
and (1.8) will be called normal stochastic non-holonomic systems if W(t) is a Wiener process, 
Poisson stochastic non-holonomic systems if W(t) is a Poisson process, and general-form 
stochastic non-holonomic systems if W(t) is an arbitrary process with independent increments. 
Eqs.(l.B) can be transformed using the generalized Ito formula (1.9) to the form 

(1.10) 

We Will use the following representations and notation: 

T* - II = ','rq"Wq'* + G,q” - II,, G E 11 gaj 11, G, 3 11 g,” 11 
Iz* = %q”TAq” + A,,q” + A w A=I/a2il, A,=[IEL,II 

(~~zj$+,%ql.+Bi. -~,.*_,_i;~dq~+a.‘dlfo,“dW,t 
m 

(1.11) 



As the initial values for t = t, in (1.10) we take the random variables qz = gho, q: = qio’. 
For a normal stochastic non-holonomic system, when \V=W,, we have 

D,[u]=O, vn=O, &=aS3=0, Fa3=0 

and Eq.tl.10) may be represented in the form of Ito stochastic differential equations 

Analysis of the structure of the equations of motion (1.12) leads to the following con- 
clusions. The terms with second derivatives characterize inertial forces. The terms quadratic 
in velocity characterize gyroscopic forces for r=l and 2 and some generally dissipative 
forces for r=3. The terms linear in velocity define gyroscopic forces for r=l, dis- 
sipative forces for r= 2, forces caused by non-homogeneity and non-autonomy of the con- 
straints for r = 3, perturbing forces that vanish in the absence of random perturbations for 
r=4, and irregular perturbing forces for r=5. The expression in square brackets 
characterizes a certain equivalent perturbing force, where Qdll = 0 and QSgr=O when there 
are no random perturbations (n = 0). 

Note that in the important practical case when the coefficients gsj, 8s' in the ex- 
pression for the kinetic energy and the coefficients Bis’ of the non-holonomic constraints 
are linear functions of the random parameters n, we have Aaz3 = 0, and Eqs.(l.lCl) of the 
general-form stochastic non-ho~onomic system can also be reduced to the form (1.12). The 
equations of motion of a Poisson stochastic non-holonomic systems have a similar form. 

The equations of a normal stochastic non-holonomic system can be rewritten in the 
Hamiltonian form: 

q" = dW’d.f z Y (q. p’, n, t) 
y" = U{q,p',n,t) + GU(q,p', s, 0v 

(1.13) 

where p' = dT*iaq", H s the Legendre transform of the function L* = T* --II*. anddp,‘- U&t - 
u “dW = 0 is the equivalent form of Eq.(1.8) with q" replaced everywhere by Y. 
e&atPons should be supplemented by the relationship 

These 

qv* = WY +- B" G h(q, p’,n, I) (1.14) 

Combining Eqs. (1.21, (1.13) and (1.14) with the corresponding initial conditions, we 
represent them by the following equation for the augmented state vector Z = Inrqrp'TIT: 

z'=rrz,t)+b(Z,t)V,, Z(Q=ZO (1.15) 
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2. Equations for the distributions of the state vector of a stochastic non-holonomic 
system described by Ito stochastic differential Eqs.(1.15) can be obtained by various exact 
and approximate methods of the theory of stochastic differential systems (see, e.g., /l/j. 

bet us write the equations for the characteristic functions and the densities of the 
state Vector Z(t) assuming the one-dimensional distribution (and therefore all the finite- 
dimensional distributions) of the process with independent inCrementS IV(t) defined by 
(1.3) to be known. Denote by h,(p; t) and g,(h;t) the one-dimensional characteristic 
functions of the processes W(t) and Z(t), respectively. Then the characteristic function 

g, (A; Q satisfies the well-known Pugachev equation 

ag,(h;t)/at = M{i (n")rcp(R,t) + i@*)=X(X,q,p';t) -I- i(hP')rU(X,q,p'ht)+ 

x[~(~,~)T~~;~] i x[V(JC,q, P', t)TbP’;t]) exp(&TZ) 
h = r(~~)~(~q)T(~p')T]T, ~(p; t)= a Ink,(p;t)/& E = j/_-2 

(2.1) 

with the initial condition &(A; to) = go(h), where go(h) is the characteristic function of 

Z(G. The equation and the initial condition (2.1) under certain conditions completely and 
uniquely define g, (1; t) for t>t, 111. 

Followig flj, we can write, as for (2.11, the equations for the n-dimensional (n = 2, 

3 ) , . . . characteristic function of the process Z = Z(t). 
The specific form of the function x (6 t) in Eq.(2.1) is determined by the nature of 

the process W(t). If W(t) is a Wiener process, then x(&t)= -li2pTv(t)p; if W(t) is a 
general Poisson process, then x (Pi t1= [g(p) - Ilv (0, where g(p) is the characteristic 

function of the jumps. 
NV, (t)=_ 

If the process W(t) consists of N independent blocks, 
* - WN (t)TIT, then partitioning p into corresponding blocks, we have 

w (t) = 

x(b(z,t)T1;t)= x&,n(b,(~, tjTk t)> b@,t) = [b,(z, t)...bm(z,t)J 

In general, when the process W (t) is defined by (1.3), we obtain for the function 

x (P; t) and for the mean number of c(x) jumps of the process W(t) 

x(p; If = - +pTs(t)p + 1 ~exp(~~=c(x)) - 1 - ipTc(~f]zp (t,x)k 

RI 

B(t,x)d.=Sv,(~,x,~~dx 
0 

For normal white noise V, Eq.(2.11 leads to the Fokker-Planck-Kolmogorov equation for 
the one-dimensional density fi = fx (n, q,p',tf 

"$ = - $(cpf,) - $Xfi) - -$- (Uf,) + (2.2) 

+r 
[ -g- g- wvI(I)] + + tr [+--g PwTfi)] 

For a stationary normal stochastic non-holonomic system, 
distribution is determined from (2.1) for ~g~/~t = 0 

the one-dimensional stationary 
or from (2.2) for L&/& = 0. 

In the general case, when the process W = W(t) is defined by formula (1.3), the 
corresponding equation for the one-dimensional density is given in /l, p.314/. 

Remark. The equations for the distributions of the state vector of a normal stochastic 
non-holonomic system (1.15) can be obtained by assuming stochastic processes in Stratonovich's 
sense in the initial equations of the problem and at the last stage applying Ito's formula 
(1.9) for the Wiener process W=W,. For Poisson systems and general-form systems, this 
technique does not work, because the corresponding stochastic process is not Markov. 

3. The equations Of motion of the stochastic non-holonomic system (l.l), (1.6) can be 
obtained using the general theorems of dynamics or, for instance, the Appel equation. If the 
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resulting system of stochastic equations of motion is linear, then we can directly write 
explicit formulas for finite-dimensional distributions. 

EXCVilpXe. Consider the rolling of a homogeneous ball on a translationally vibrating plane 
with rolling resistance forces. The vibrational acceleration is an arbitrary vector white 
noise V= [V,V,]r with constant intensities vs. vy. In what follows, x and y are the coordi- 
nates of the centre of the ball relative to the vibrating plane. Then, for Q= I, and 3: 
we obtain the equations 

UX~+2EUg=: 8VX, 2‘ = llX. 8:= conat (3.1) 

(8 >o is the coefficient of friction). The equations for us and y are obtained from (3.1) 
by replacing x with y. A kinematic constraint links the projections of the angular velocity 
0 on the axes x and y and the components ur, uv:ux= ray, I+= -r% (r is the radius of the ball}. 
The stochastic Eqs. (3.1) are linear Langevin equations. With zero initial conditions, the 
means, variances, and covariances of the processes =,Y, 1: are determined by the well-known 
formulas 11, p.3071, which give 

Explicit formulas for the finite-dimensional characteristic functions in this case are 
given in /l/. 

4. We know that in non-linear mechanical systems under the action of perturbing forces 
represented by normally distributed white noise there exists a narrow-sense stationary process, 
whose one-dimensional density is given by the Gibbs formula /3/. A generalization of the 
Gibbs distribution has been obtained for some types of holonomic systems /l, 4, 51. The 
structure of the equations of the non-holonomic systems (1.131, (1.14) suggests the following 
generalization. 

Proposition 1. Assume that the stochastic equations of motion of some mechanical system 
in canonical variables have the form 

9 
I._ aH 

- tip’ 1) 
p” = - -$- - 2sa(q')c + b(q')V, 9“' = A(q',p') 

Here 2s is the specific coefficient of viscous friction, V is the vector of independent 
normally distributed white noises of the same constant intensity v; a = a (q') and b = b (q') 
are matrix functions. Let r = [q'Tp'r]T = [x'Tx"TIT dim x' = dim A < dim x. If 

1) a + aT== 2bhT, 2) 1 ah/dx’ 1 j; 0 

3) spi exp[--(q',P')ldn'dP'<00 (a= 48/V) 

then there exists a narrow-sense stationary solution, and the one-dimensional densities q', p' 
and p" _: q"' are given by the formulas 

tl is’, P') = c exp t--c& (q’, p')l 
a 

(&I) 

ft (p") = f ,fi[in-l(pm,f), x"] J(p",x")dx" 
-m 

I (p", x!') = 1 dh_'(Ii', xyapn) # 0 

where c is a constant determined from the normalization conditions. 
The proof of Proposition 1 is similar to /l, Example 5.16/, using the formula for the 

distribution density of a function of a random argument /6/. 
Proposition 1 can be generalized to non-holonomic systems of the form 

q" _ Y(q', p'), p" =i U,(q',p'f - fs&(q',P') + h(q')V, q"' = h(q',p') (e.z) 

which without friction (e = 0) and without random perturbations (b = 0) have an invariant 
measure with some first integral H = H(q',p'f. 

Propc.witi0n 2. Assme that for E = 0, b = 0, system (4.2) has an invariant measure with 
density N (q’), i.e., a= {~~}/~q' f a* (~~~)/~p' = 0, and the first integral H = H (q', p'f. 
If u, = a (q'~~~/~' and conditions 1-3 of Proposition 1 are satisfied, then there exists a 
narrow-sense stationary solution and the one-dimensional densities q', PJr and p" = q"' are 

given by the formulas 
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fi (q', p') = cN (q') exp [-aH (q', p')l, a = ~E/V (4.3) 
and (4.1), respectively. 

Propositions 1 and 2 provide exact stationary solutions only for normal non-holonomic 
systems that satisfy the required conditions. 

For a number of general-form systems encountered in statistical non-holonomic non-linear 
mechanics, the finite-dimensional distributions can be approximately obtained by the normal 
approximation method /I/. 

5. In what follows, some of the notation from Sects.l-4 will be used in a different 
sense, as conventionally accepted in the dynamics of rigid bodies. Consider a heavy rigid 
body enclosed by a strictly convex surface and resting on an absolutely rough horizontal 
surface. We assume that the support surface performs translational vibration. The position 
of the body is defined by the coordinates i- = IzYzlr of its centre of mass G in the coordi- 
nates system OlcYz (the plane OxY coincides with the vibrating support plane, and the Oz 
axis points vertically up), and the Euler angles Q = [$cptV that define the orientation of 
the principal central axes of inertia GSrlS of the body relative to the coordinates system 
oxyz. We introduce a fixed system of coordinate %%YIZ, with axes parallel to the cor- 
responding axes of the moving coordinate systems Oxyz. The position of the vibrating plane 
is given if we know the time variation of the vector 010 (t). The components of the vector 

010 = [x0 (0YLl (0 so @)I* are treated as independent stochastic processes, We assume that the 
body moves without separating from the support surface, so that z = z(cp,8). 

The constraint equations of the system (expressing the absence of sliding at the point 
of contact of the body with the plane) are deterministic and have the form /7/ 

P' = br (q)q', b = II bijll (1, j = 1, 2, 3) 
b,, = -z~ sin$/sintl - zecos$). b,, = -3b,,lc+$,, b,, = 0 

b,, = -zs sin+ ctg 8 - (ze cos 8 -/- z sin 0) cos$, 
b,, = --8b,,l~, b,, = .zm 

(5.1) 

bsl = z sin+, b,, = -z cos$, b,, = ze (ze = ada% zq = 3z(hp) 

Note that b, = bbT is a matrix function of the angles cp and 0 only. 
The Lagrangian function of the system has the form 

L = L, + m (z0.2 + y;* + 20'2 + 2ir; + Zy'y,' + 2z'2,')/2 
L, = m (z'~ + ~'~)/2 + (A cos' 'p + B sin2 'p + mze2)/B’3/2 + 

(c -I- mzqe)q’2/2 + [(A srnE 'p + B co9 cp) sin2 0 + C CO.? e]+‘*/2 + 
mzez&cp’ + C cos e+*cp* + (A - B)sin 8 sin 'p cos cpe’q’ - mgz 

(5.2) 

where m is the mass of the body, A, B, C are its principal central moments of inertia, and 

LI is the Lagrangian function corresponding to the motion of the body on a fixed absolutely 
rough surface /7/. 

Assume that dissipative forces with the Rayleigh function on 
the body. 

Q, = ch (c', q, q', 0,O’) act 
The motion of a rigid body on a horizontal, absolutely rough, translationally 

vibrating plane can be reduced to the motion of a rigid body on a fixed horizontal absolutely 
rough plane in the presence of perturbing forces of the form Q = -mbO,O". 

Indeed, for the elementary work 6A’ of the inertial forces in the moving coordinate 
system Oxyz we have the expression 

Hence Q = -mbO,O". 

6A’ = - mOp’T6r = - mO,O"TbTGq 

Therefore, the equations of motion of the body may be written in the form 

(5.3) 

where I' is a column matrix of the non-holonomic terms, and 

L, and CD by replacing x’, y', z' 
L,*, a)* are obtained from 

by the corresponding expressions (5.1) in terms of q and 
9. The explicit form of L,* and ris given in /7/. 

Eqs.(5.3) can be written in Hamiltonian form as 

. arl . alI 
q=dp, P =-dp- aq’ e+r+Q, ~=[p,p~pee]~=+. 

Here H is the Legendre transform of the function L,*;on the right-hand side of the 
equations for p', all q' are replaced by aHlap. 
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Below we will consider two models of viscous friction. The first corresponds to the 
Rayleigh function CD1 = meUe2 and the second to @*= meU2, where U and U, are the 
absolute and the relative velocities (in relation to the moving coordinates system 0xy.z) of 

the centre of mass G, and e>O is the specific coefficient of friction. 

CD,* = meq’rb,q’, @,* = mD,* + i?meO,O’=brq’ + n&,0 2 

In the first case, we assume that the vibrational accelerations o,o.* constitute a 

vector V of independent normally distributed white noise of constant intensity Y. In the 
second case, we treat x = or0 as the vector of stationary random functions satisfying 
the shaping filter differential equation sTc' + 2s~ = V /l, p.260/. We can thus write the 
equations of motion (5.4) in both cases in the form of a system of stochastic non-linear dif- 

ferential equations 

dH 
q =dp1 

p.=_++r-2amb,+nbV (5.5) 

Eqs.(5.5) for e=O,b=O admit of the energy integral a = con&. Moreover, conditions 
l-3 of Proposition 1 are satisfied. However, in general, these equations do not have an 
invariant measure /%/. 

Let us consider one of the cases when an invariant measure nevertheless exists. Assume 
that the body is enclosed by a surface of revolution with the axis c and it has dynamic 
symmetry, i.e., A = B, I::= z(8). Then H, f,b, are independent of the angles * and q Eqs. 
(5.5) for e=O,b=O admit of three first integrals /9/ and have an invariant measure with 

density N(n) /lo/: 

1%’ (8) .= 6-’ (O), 6 (0) = (I + rnC-‘~~ + mA-‘x2)“’ 

\I = z sin 0 + ze cos A. x = --.: cos 0 + zB sin t) 

Only the energy integral II= EI(p,8) satisfies condition 3 of Proposition 1. Therefore, 
by Proposition 2, a stationary solution exists and the one-dimensional density for the 

variables 8, P@, pc and pm is given by the formula 

6. An important special case of normal stochastic non-holonomic systems is Chaplygin 
normal stochastic non-holonomic systems which satisfy the following conditions: 

a".(q, s, t) = a"&', s, t). a,"(q, sc, t) = a,*(q', 31, t) ('3.1) 

Q,‘(q, q., n, t) = Qsl (q’, q’, x, t), Q,” (9, q’, x, t) = Qs2 Is’, 9.9 fi> t) (6.2) 

(s=m+i,...,n), Q1=...=Q,=O 

T (9, q',n, t) = T (q',q',n. t), n (q,n,t) = n (q', s, t) (6.3) 

R(q, q', s, t) = R (q', q., JI, t), q' = [%+I.. . qnlr 

The equations of motion of a Chaplygin non-holonomic stochastic system in Lagrange 

variables have the form (1.12) with 

(the expressions for the other quantities are given in (1.9) and (1.11)). 
The stochastic equations of motion of a Chaplygin non-holonomic stochastic system in 

canonical Hamiltonian variables reduce to the form (1.3), (1.14) for 

H = -+p'=G-lp' - G,G-lp' + $G,G-lG,r + II, 

Y = G-lp'-G-rG,r, A =B'Y + B" 

(6.5) 
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Since the stochastic equations are decomposed into two blocks for the Lagrange variables 

q', 9' (or q', p') and for the variables q" the solution sequence is obvious /ll/. We 

should first find the distributions of the variables q',q" (or q', P') I and then apply 
the formulas for the distribution of a function of a random argument to find the distributions 
of q"'. 

In the general case, because of non-linearity of the problem, it is impossible to obtain 
an exact solution of the equations for finite-dimensional distributions of z1 = aI, z, = q'. z, = 

P’, ZP = 9” for normally distributed white noise V,. The simplest approximate method of 
finding the finite-dimensional distributions of the state vector Z is the normal approximation 
method (NAM) /l/. The closer the system to a linear system, the higher the accuracy of the 
NAM results. Experience with the NAM in problems of applied mechanics shows, however, that 
it also produces good results for essentially non-linear systems. 

We see from the structure of the functions 11.15) that there is no "restoring" force for 
the variables, and random fluctuations in the variables q',q" (or q', P') may produce 
drift. This is a qualitatively new effect, typical of stochastic non-holonomic systems. 

Let us find the mean and the covariance function of the variable q" assuming that we 
know the one-dimensional distribution fl (Xl t) and the two-dimensional distribution fz(x',xn; 

t1, tz) for the vector X = M,TZ,rZ,TIT. 

From the third equation in (1.15) we obtain by integration 

q" = i A(x,T) dz 
t. 

Hence for the mean and the covariance function we obtain 

nrp- (t) = im,(r)dr, 

cc 

r%(t) = 1 A@, t)f,(x;t)dx 
2. -Da 

',I $ 

fz(x',x"; Q, z,)dx' dx", h" = A - mh 

W-5) 

(6.7) 

The first two formulas in (6.7) define systematic drift, and the other formulas define 
fluctuational drift /12/. 

Direct calculation of the statistical drift characteristics is quite difficult because 
of the non-linearity of non-holonomic problems. 
if, 

The computations are substantially simplified 
without sacrificing the non-linearity of the problem, we perform statistical linearization 

of the non-linear function A for the normal distribution 

A+, t) = .4,(m,, K,, t) + (a&(~ K,,t)/am,)xO 
A,=M,vA, x0=x-m, 

As a result, formulas (6.7) take the form 

For stationary fluctuations in x, setting t, = t, = 1, t,, = 0, K, (tl, t.J = k, (tl - t2), we 
obtain 

The admissibility of the NAM is decided in the following way: if 
ax (0) and 3.. (0) are close to one another at the frequency O-O, 

the spectral.densities 
the-NAM can also be 

used to determine K,..If ax(w) -0, w-0, then 
may not be ruled out. 

a**. (0) # 0 and in this case fluctuational drift 
For ergodic broadband stochastic processes, fluctuational drift is 

always present, because the integral AI(co) exists and is non-zero. 
bank process, AI(=) does not exist, 

Conversely, for a narrow- 
and therefore there is no fluctuational drift /12/. 

Remark. The equations for the mean of the state vector m, 
the covariance function K VI, tn) 

the covariance matrix K, and 
of the non-linear system (1.15) can be obtained by treating 

the stochastic processes in the original equations in Stratonovich's sense and applying Ito's 
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formula only at the last stage to construct the equations for m, K, and K @I. ts) /l/ . 
Sect.6 is based on the author's paper "Correlation Theory of Oscillations for Chaplygin 

Non-holonomic Systems" presented at the All-Union Kamenek Conference on Stability, Oscillations 
of Mechanical Systems, and Aerodynamics, Moscow, 2-4 Febraury 1988 (unpublished manuscript, 
VINITI No.8886-V-88, 22.12.88). 
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